Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360747

RESUMO

Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.


Assuntos
Proteoma , Sinapses , Camundongos , Masculino , Animais , Feminino , Proteoma/metabolismo , Sinapses/fisiologia , Células Piramidais/fisiologia , Encéfalo/metabolismo , Formaldeído , Hipocampo/metabolismo
2.
Cell Rep ; 42(7): 112714, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384525

RESUMO

Neurexin synaptic organizing proteins are central to a genetic risk pathway in neuropsychiatric disorders. Neurexins also exemplify molecular diversity in the brain, with over a thousand alternatively spliced forms and further structural heterogeneity contributed by heparan sulfate glycan modification. Yet, interactions between these modes of post-transcriptional and post-translational modification have not been studied. We reveal that these regulatory modes converge on neurexin-1 splice site 5 (S5): the S5 insert increases the number of heparan sulfate chains. This is associated with reduced neurexin-1 protein level and reduced glutamatergic neurotransmitter release. Exclusion of neurexin-1 S5 in mice boosts neurotransmission without altering the AMPA/NMDA ratio and shifts communication and repetitive behavior away from phenotypes associated with autism spectrum disorders. Thus, neurexin-1 S5 acts as a synaptic rheostat to impact behavior through the intersection of RNA processing and glycobiology. These findings position NRXN1 S5 as a potential therapeutic target to restore function in neuropsychiatric disorders.


Assuntos
Processamento Alternativo , Transtorno Autístico , Animais , Camundongos , Processamento Alternativo/genética , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Sinapses/metabolismo , Transmissão Sináptica
3.
J Neurosci ; 42(48): 8936-8947, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36261284

RESUMO

In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds ß not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-ß to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-ß and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-ß and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-ß and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Masculino , Feminino , Ratos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Neurônios/fisiologia
4.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662394

RESUMO

LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Animais , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/fisiologia
5.
Neuron ; 109(4): 566-568, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33600752

RESUMO

The relationship between synaptogenesis and dendritogenesis is poorly understood, particularly in mammals. In this issue of Neuron, Takeo et al. (2021) manipulate synaptic organizers GluD2 and cerebellin-1 to show that Purkinje cells regulate how their dendrites branch by competing with neighboring cells for synaptic real estate.


Assuntos
Neurônios , Células de Purkinje , Animais , Dendritos , Neurogênese
7.
Elife ; 92020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915137

RESUMO

Post-transcriptional mechanisms regulating cell surface synaptic organizing complexes that control the properties of connections in brain circuits are poorly understood. Alternative splicing regulates the prototypical synaptic organizing complex, neuroligin-neurexin. In contrast to the well-studied neuroligin splice site B, little is known about splice site A. We discovered that inclusion of the positively charged A1 insert in mouse neuroligin-1 increases its binding to heparan sulphate, a modification on neurexin. The A1 insert increases neurexin recruitment, presynaptic differentiation, and synaptic transmission mediated by neuroligin-1. We propose that the A1 insert could be a target for alleviating the consequences of deleterious NLGN1/3 mutations, supported by assays with the autism-linked neuroligin-1-P89L mutant. An enrichment of neuroligin-1 A1 in GABAergic neuron types suggests a role in synchrony of cortical circuits. Altogether, these data reveal an unusual mode by which neuroligin splicing controls synapse development through protein-glycan interaction and identify it as a potential therapeutic target.


Assuntos
Processamento Alternativo , Moléculas de Adesão Celular Neuronais/metabolismo , Polissacarídeos/metabolismo , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Ratos
8.
Neuron ; 105(6): 1007-1017.e5, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974009

RESUMO

LRRTM4 is a transsynaptic adhesion protein regulating glutamatergic synapse assembly on dendrites of central neurons. In the mouse retina, we find that LRRTM4 is enriched at GABAergic synapses on axon terminals of rod bipolar cells (RBCs). Knockout of LRRTM4 reduces RBC axonal GABAA and GABAC receptor clustering and disrupts presynaptic inhibition onto RBC terminals. LRRTM4 removal also perturbs the stereotyped output synapse arrangement at RBC terminals. Synaptic ribbons are normally apposed to two distinct postsynaptic "dyad" partners, but in the absence of LRRTM4, "monad" and "triad" arrangements are also formed. RBCs from retinas deficient in GABA release also demonstrate dyad mis-arrangements but maintain LRRTM4 expression, suggesting that defects in dyad organization in the LRRTM4 knockout could originate from reduced GABA receptor function. LRRTM4 is thus a key synapse organizing molecule at RBC terminals, where it regulates function of GABAergic synapses and assembly of RBC synaptic dyads.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Bipolares da Retina/fisiologia , Animais , Feminino , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Receptores de GABA/metabolismo , Receptores de GABA/fisiologia , Retina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
9.
PLoS Comput Biol ; 15(6): e1007113, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31211786

RESUMO

In order to further our understanding of how gene expression contributes to key functional properties of neurons, we combined publicly accessible gene expression, electrophysiology, and morphology measurements to identify cross-cell type correlations between these data modalities. Building on our previous work using a similar approach, we distinguished between correlations which were "class-driven," meaning those that could be explained by differences between excitatory and inhibitory cell classes, and those that reflected graded phenotypic differences within classes. Taking cell class identity into account increased the degree to which our results replicated in an independent dataset as well as their correspondence with known modes of ion channel function based on the literature. We also found a smaller set of genes whose relationships to electrophysiological or morphological properties appear to be specific to either excitatory or inhibitory cell types. Next, using data from PatchSeq experiments, allowing simultaneous single-cell characterization of gene expression and electrophysiology, we found that some of the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. In summary, we have identified a number of relationships between gene expression, electrophysiology, and morphology that provide testable hypotheses for future studies.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Neurônios , Transcriptoma/fisiologia , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Camundongos , Modelos Biológicos , Neurônios/classificação , Neurônios/metabolismo , Neurônios/fisiologia , Análise de Célula Única , Córtex Visual/citologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31191292

RESUMO

Formation of synapses between neurons depends in part on binding between axonal and dendritic cell surface synaptic organizing proteins, which recruit components of the developing presynaptic and postsynaptic specializations. One of these presynaptic organizing molecules is protein tyrosine phosphatase σ (PTPσ). Although the protein domains involved in adhesion between PTPσ and its postsynaptic binding partners are known, the mechanisms by which it signals into the presynaptic neuron to recruit synaptic vesicles and other necessary components for regulated transmitter release are not well understood. One attractive candidate to mediate this function is liprin-α, a scaffolding protein with well-established roles at the synapse. We systematically mutated residues of the PTPσ intracellular region (ICR) and used the yeast dihydrofolate reductase (DHFR) protein complementation assay to screen for disrupted interactions between these mutant forms of PTPσ and its various binding partners. Using a molecular replacement strategy, we show that disrupting the interaction between PTPσ and liprin-α, but not between PTPσ and itself or another binding partner, caskin, abolishes presynaptic differentiation. Furthermore, phosphatase activity of PTPσ and binding to extracellular heparan sulfate (HS) proteoglycans are dispensable for presynaptic induction. Previous reports have suggested that binding between PTPσ and liprin-α is mediated by the PTPσ membrane-distal phosphatase-like domain. However, we provide evidence here that both of the PTPσ phosphatase-like domains mediate binding to liprin-α and are required for PTPσ-mediated presynaptic differentiation. These findings further our understanding of the mechanistic basis by which PTPσ acts as a presynaptic organizer.

11.
Curr Opin Neurobiol ; 57: 71-80, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30771697

RESUMO

Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.


Assuntos
Sinapses , Animais , Moléculas de Adesão Celular Neuronais , Compostos de Dansil , Galactosamina/análogos & derivados , Camundongos , Proteínas do Tecido Nervoso
12.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100184

RESUMO

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Assuntos
Heparitina Sulfato/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Glicopeptídeos/análise , Heparitina Sulfato/química , Humanos , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência
13.
Proc Natl Acad Sci U S A ; 115(23): E5382-E5389, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784826

RESUMO

Leucine-rich repeat transmembrane (LRRTM) proteins are synaptic cell adhesion molecules that influence synapse formation and function. They are genetically associated with neuropsychiatric disorders, and via their synaptic actions likely regulate the establishment and function of neural circuits in the mammalian brain. Here, we take advantage of the generation of a LRRTM1 and LRRTM2 double conditional knockout mouse (LRRTM1,2 cKO) to examine the role of LRRTM1,2 at mature excitatory synapses in hippocampal CA1 pyramidal neurons. Genetic deletion of LRRTM1,2 in vivo in CA1 neurons using Cre recombinase-expressing lentiviruses dramatically impaired long-term potentiation (LTP), an impairment that was rescued by simultaneous expression of LRRTM2, but not LRRTM4. Mutation or deletion of the intracellular tail of LRRTM2 did not affect its ability to rescue LTP, while point mutations designed to impair its binding to presynaptic neurexins prevented rescue of LTP. In contrast to previous work using shRNA-mediated knockdown of LRRTM1,2, KO of these proteins at mature synapses also caused a decrease in AMPA receptor-mediated, but not NMDA receptor-mediated, synaptic transmission and had no detectable effect on presynaptic function. Imaging of recombinant photoactivatable AMPA receptor subunit GluA1 in the dendritic spines of cultured neurons revealed that it was less stable in the absence of LRRTM1,2. These results illustrate the advantages of conditional genetic deletion experiments for elucidating the function of endogenous synaptic proteins and suggest that LRRTM1,2 proteins help stabilize synaptic AMPA receptors at mature spines during basal synaptic transmission and LTP.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Moléculas de Adesão de Célula Nervosa/deficiência , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
14.
Neuron ; 97(3): 596-610.e8, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29395912

RESUMO

In contrast with numerous studies of glutamate receptor-associated proteins and their involvement in the modulation of excitatory synapses, much less is known about mechanisms controlling postsynaptic GABAA receptor (GABAAR) numbers. Using tandem affinity purification from tagged GABAAR γ2 subunit transgenic mice and proteomic analysis, we isolated several GABAAR-associated proteins, including Cleft lip and palate transmembrane protein 1 (Clptm1). Clptm1 interacted with all GABAAR subunits tested and promoted GABAAR trapping in the endoplasmic reticulum. Overexpression of Clptm1 reduced GABAAR-mediated currents in a recombinant system, in cultured hippocampal neurons, and in brain, with no effect on glycine or AMPA receptor-mediated currents. Conversely, knockdown of Clptm1 increased phasic and tonic inhibitory transmission with no effect on excitatory synaptic transmission. Furthermore, altering the expression level of Clptm1 mimicked activity-induced inhibitory synaptic scaling. Thus, in complement to other GABAAR-associated proteins that promote receptor surface expression, Clptm1 limits GABAAR forward trafficking and regulates inhibitory homeostatic plasticity.


Assuntos
Potenciais Pós-Sinápticos Inibidores , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Hipocampo/metabolismo , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteômica , Ratos
15.
Cell Rep ; 21(13): 3637-3645, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281813

RESUMO

Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1-/- hippocampal networks demonstrate muted responses to neural excitation, and Mdga1-/- mice are resistant to induced seizures. Mdga1-/- mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.


Assuntos
Cognição , Rede Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/patologia , Deleção de Genes , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/deficiência , Sinapses/ultraestrutura , Transmissão Sináptica
17.
Neuron ; 95(4): 896-913.e10, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817804

RESUMO

Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.


Assuntos
Compostos de Dansil/metabolismo , Galactosamina/análogos & derivados , Neurturina/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células COS , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Galinhas , Técnicas de Cocultura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Galactosamina/genética , Galactosamina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurturina/genética , Mapas de Interação de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Alinhamento de Sequência
18.
Neuron ; 91(5): 1052-1068, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608760

RESUMO

Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Proteínas Ligadas por GPI/fisiologia , Haploinsuficiência/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/biossíntese , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismo
19.
Neuropsychopharmacology ; 41(3): 802-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26171716

RESUMO

Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2(-/-) mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2(-/-) mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Transtornos Cognitivos/metabolismo , Interneurônios/metabolismo , Proteínas de Membrana/deficiência , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/genética , Comportamento Exploratório/fisiologia , Feminino , Imunofluorescência , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Técnicas de Cultura de Tecidos
20.
Neurobiol Dis ; 89: 223-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26581639

RESUMO

Global cerebral ischemia induces selective degeneration of specific subsets of neurons throughout the brain, particularly in the hippocampus and cortex. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca(2+) overload and ultimately neuronal demise. N-methyl-d-aspartate receptors (NMDARs) are considered to be largely responsible for excitotoxic injury due to their high Ca(2+) permeability. In the hippocampus and cortex, these receptors are most prominently composed of combinations of two GluN1 subunits and two GluN2A and/or GluN2B subunits. Due to the controversy regarding the differential role of GluN2A and GluN2B subunits in excitotoxic cell death, we investigated the role of GluN2B in the activation of pro-death signaling following an in vitro model of global ischemia, oxygen and glucose deprivation (OGD). For this purpose, we used GluN2B(-/-) mouse cortical cultures and observed that OGD-induced damage was reduced in these neurons, and partially prevented in wild-type rat neurons by a selective GluN2B antagonist. Notably, we found a crucial role of the C-terminal domain of the GluN2B subunit in triggering excitotoxic signaling. Indeed, expression of YFP-GluN2B C-terminus mutants for the binding sites to post-synaptic density protein 95 (PSD95), Ca(2+)-calmodulin kinase IIα (CaMKIIα) or clathrin adaptor protein 2 (AP2) failed to mediate neuronal death in OGD conditions. We focused on the GluN2B-CaMKIIα interaction and found a determinant role of this interaction in OGD-induced death. Inhibition or knock-down of CaMKIIα exerted a neuroprotective effect against OGD-induced death, whereas overexpression of this kinase had a detrimental effect. Importantly, in comparison with neurons overexpressing wild-type CaMKIIα, neurons overexpressing a mutant form of the kinase (CaMKII-I205K), unable to interact with GluN2B, were partially protected against OGD-induced damage. Taken together, our results identify crucial determinants in the C-terminal domain of GluN2B subunits in promoting neuronal death in ischemic conditions. These mechanisms underlie the divergent roles of the GluN2A- and GluN2B-NMDARs in determining neuronal fate in cerebral ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Morte Celular , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Knockout , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...